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Abstract- An area eficient architecture for the embedded block 
coding is presented in this paper. A new algorithm is proposed to 
compute the state variables on-the-fly. Thus, the memory for the 
state variables are eliminated, which occupies more than 60% area 
in a conventional embedded block coding architecture. The area 
of the proposed architecture is only of conventional architectures 
while the throughput is the same as others. The proposed archi- 
tecture has the highest performance comparing with other existing 
architectures according to the experimental results. 

1. INTRODUCTION 

JPEG 2000 [ I ]  [2] [3] [4] is well-known for its excellent 
coding performance and numerous features [5], such as region 
of interest, scalability, error resilience, etc. All these power- 
ful tools can be provided by a unified algorithm in a single 
JPEG 2000 codestream. For example, an image can be loss- 
lessly coded for storage and then retrieved at different bit-rates 
by transcoding. Transcoding of the JPEG 2000 codestream 
can be done by parsing, reordering, and truncating the origi- 
nal codestream. However, the high computational complexity 
that gives such excellent performance and rich features corre- 
spondingly restricts real-time applications of JPEG 2000. In 
this paper, we proposed an area efficient architecture for the 
embedded block coding in JPEG 2000. 

JPEG 2000 is a new still image coding standard, which is 
entirely different with the JPEG [6]. The functional block dia- 
gram of the JPEG 2000 encoder is shown in Fig. l .  The Dis- 
crete Wavelet Transform (DWT) is adopted as the transform 
algorithm of JPEG 2000. The DWT has several features that 
are better than the Discrete Cosine Transform (DCT), such as 
better coding performance, easy rate control, fully embedded 
coding, etc. After the DWT, a uniform scalar quantization is 
applied to the transformed coefficient. The entropy coding al- 
gorithm of JPEG 2000 is the Embedded Block Coding with 
Optimized Truncation (EBCOT) (71 [8]. It is a two-tiered al- 
gorithm, in which the Embedded Block Coding (EBC) is the 
tier-1 and the Rate-Distortion Optimization (RDO) is the tier- 
2. The EBC is based on a context-adaptive binary Arithmetic 
Encoder (AE). By optimized truncation of the embedded bit 
streams, the RDO optimizes the coded image quality at a given 
target bit rate. 

The Embedded Block Coding (EBC) is the most complicated 
part of JPEG 2000 [9] and is the bottleneck for real-time appli- 
cations. Therefore, many EBC architectures are proposed [9] 
[IO] [ I  11 [I21 to solve the problem. Lian et al. [9] proposed 
the first EBC architecture, which implements the default mode 
of the EBC algorithm. In this architecture, three techniques are 
used to skip unnecessary check-point, and the processing cy- 
cles are reduced by 60% comparing to [2]. To reduce the hard- 
ware cost, Hsiao et al. [IO] proposed a memory-saving archi- 
tecture that reduces the memory requirement by 4 Kbits (Kb). 

Fig. I .  Functional block diagram of the JPEG Zoo0 encoder. The JPEG ZOO0 
encoder comprises the discrete wavelet transform, the uniform scalar quantiza- 
tion, and the embedded block coding with optimization truncation algorithm. 

On the other hand, Chiang et al. [ 1 11 proposed a pass-parallel 
architecture to increase the processing rate based on the parallel 
mode. The processing cycles are reduced by 67% comparing 
to [2]. The above three architectures process a code-block bit- 
plane by bit-plane. Fang et al. proposed a parallel architecture 
to process a coefficient per cycle. All the above architectures 
occupies more than 5.0 mm2 silicon area in 0.35 prn technology, 
which is too large. 

In this paper, we proposed an area efficient EBC architecture 
for JPEG 2000. This architecture is based on the new context 
formation algorithm, which can accomplish the context forma- 
tion without storing any state variables. All the state variables 
are computed on-the-fly while a coefficient is read. Besides, 
the dataflow and controls are simplified by using the proposed 
algorithm. This architecture can encode all the three coding 
passes in a bit-plane in one scan. Therefore, it features high 
throughput and low area cost for the embedded block coding in 
JPEG 2000. 

This paper is organized as follows. The proposed context for- 
mation algorithm is shown in Section 11. Section 111. describes 
the proposed area efficient EBC architecture. Experimental re- 
sults and comparisons are shown in Section IV. Finally, Sec- 
tion V. concludes this paper. 

11. PROPOSED CONTEXT FORMATION ALGORITHM 

In this section, context formation without storing state vari- 
ables is proposed. Before introducing the proposed context for- 
mation method, let's briefly review the embedded block coding 
algorithm. A code-block is sign-magnitude represented for the 
embedded block coding, as shown in Fig. 2. The magnitude bit- 
planes are encoded from the Most Significant Bit (MSB) bit- 
plane of the code-block to the Least Significant Bit (LSB) bit- 
plane. A bit-plane comprises three coding passes: significant 
propagation pass (Pass l) ,  magnitude refinement pass (Pass 2), 
and cleanup pass (Pass 3). Within a coding pass, sample coeffi- 
cients are divided into stripes, whose height is fixed at four and 
the width is equal to the code-block width. To code a sample 
coefficient, the sample coefficients in a 3x3 window, which is 
called a context window, are involved. The coding statuses of 
current and neighbor sample coefficients are used to generate 
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Fig. 2. Decomposition of a code-block and scan order within a code-block. 
A 3 x 3 context window is involved for the context formation of a sample 
coefficient. 

TABLE I 
CODING PASS CLASSIFICATION 

Coding Pass Condition 
Pass 1 

Pass 2 Significant sample 
Pass 3 

Insignificant sample with at least one 
significant neighbor 

Insignificant sample with all insignifi- 
cant neighbors 

the context for the Arithmetic Encoder (AE). Two state vari- 
ables, U and y, are defined to summarize the coding status of a 
sample coefficient. The U indicates whether a non-zero bit of 
the coefficient is coded in previous bit-plane. A sample coeffi- 
cient is said to be significant if its U equals to one; otherwise, 
it’s insignificant. The y indicates whether a sample coefficient 
just becomes significant in latest bit-plane. The conditions to 
classify a sample coefficient into one of the three coding passes 
are shown in Table I. 

A. State Variable Computation 

fine a new state variable, ek, as 
Let p denotes the magnitude of a sample coefficient, we de- 

d‘ = 101 >> ( k  + l)), (1) 

where k denotes the bit-plane number. Equation ( 1 )  checks 
whetherp has at least one non-zero bit at bit-planes higher than 
k.  Thus, ek is the significant state after the (k+l)-th bit-plane 
is processed. Since the significant state is updated whenever a 
sample coefficient is coded, 8k is not always the same as uk. 
Fortunately, there is only one case that the significant state of 
the sample coefficient is changed, which occurs when the MSB 
of the sample coefficient lies in the current bit-plane. To get 
more insight into this problem, let’s see an example. In the 
following discussion, c is used to denote the current sample 
coefficient and s is used to denote any neighbor of c for sake 
of simplicity. Referring to Fig. 2, if s in position 15 becomes 
significant in the current bit-plane, u , ~  will change to 1 (Be- 
ing significant) when s is coded. The question is whether U,  

changes before the coding of c or not. If s belongs to Pass 1 
and c belongs to Pass 2 or Pass 3,  the new U,  must be used 
since s is coded before c (Recall that the coding order is Pass 1, 
Pass 2, and then Pass 3). In other situations, is used. The 
same analysis can be applied to other combinations of s and c 
in the context widow. As a result of above analyses, the cod- 
ing pass of the MSB of a sample coefficient is defined as a new 
state variable in the proposed algorithm. This state variable is 

denoted by p, which equals to one if the MSB of the sample 
coefficient belongs to Pass 1 and zero if the MSB belongs to 
Pass 3. As for the third state variable, y k ,  it can be computed 
by 

r” = $&(- ek+l). ( 2 )  
Note that Bk+l can be obtained by (1). 

B. Coding Pass ClassiJcation 

Since all the sample coefficients of a bit-plane are coded in 
one scan in the proposed algorithm, the sample coefficient must 
be first classified into one of the three coding passes. The cod- 
ing pass of c depends on @, and the contributions of its neigh- 
bors. For the neighbor, s, scanned before c,  its contribution, 4 :, 
is 

where k is the current bit-plane and p$ is the bit value of ps 
at bit-plane k.  The contribution of s scanned after c is a%, i.e. 
4% = e. The coding pass, P:, of c is obtained by 

4: = @-5I@.&p5>, (3 )  

@ = I  
P: = 3, (e: = O)&(V@t = 0)  . (4) i :: Otherwise 

C. SigniJcant Contribution Computation 

In this section, we will show how to use the three state vari- 
ables and the coding pass of c to compute the significant contri- 
bution of s for the context formation. I f s  is already significant 
at the time that c is coded, it is said to contribute to e. The 
significant contributions from all the neighbors in the context 
window is used for the context formation of c.  For s scanned 
before c,  its contribution is 

I f s  is scanned after c, the contribution is 

111. PROPOSED ARCHITECTURE 

In this section, a low cost Embedded Block Coding (EBC) 
architecture is proposed. The block diagram of the architecture 
is shown in Fig. 3. It contains four main modules: the Context 
Formation (CF) module, the First-In First-Out (FIFO) module, 
the Arithmetic Encoder (AE) module, and the Output Buffer 
(OB) module. The input is the wavelet coefficient and the out- 
put is the embedded bit stream. The OB module is used to 
reduce the number of output ports while maintaining the same 
throughput. To prevent the buffer overflow, the number of the 
registers are chosen as 7. 

A. Context Formation 

Based on the algorithm proposed in Sec. II., a low cost CF 
module is obtained as shown in Fig. 4. The Bk and yk are com- 
puted on-the-fly while reading the wavelet coefficient. The two 
state variables, &- and yk,  as well as sign and magnitude bit (pk) 
are fed into the 2D shift registers to fit the scan order defined 
in the JPEG 2000 standard. The MSB coding pass, p ,  is then 
generated by the MSB pass generator, and merged into the data 
flow in the 2D shift registers. Therefore, each register in the 
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Fig. 3. Block diagram of the proposed EBC architecture. There are three major 
modules: the context formation module, the FIFO module, and the arithmetic 
encoder. 

W.n 
Coeft 

Fig. 4. Block diagram of the context formation module. A 2D shift register 
bank is used to fit the dataflow with the scan order defined in the JPEG 2000 
encoder. 

2D shift registers has five bits. Although only three columns of 
stripe are involved in a context window, four columns of stripe 
are required in the proposed architecture since the MSB pass 
generator is one column ahead of the context formation. Be- 
sides, a line buffer with size 64 x 5 is required to store the last 
row of previous stripe. The eight neighbors in the context win- 
dow are fed into the MSB pass generator. For a neighbor s, 
C;, p s ,  and p: are the required information for the MSB pass 
generator as defined in (3). 

The coding pass and significant contributions are generated 
in the pass & contribution generator for the context formation. 
In order to cope with the special run-length code, the contexts 
generated by the zero coding, magnitude refinement, and sign 
coding modules are buffered for three cycles. After deciding 
whether the run-length code is used or not, the final CXD pairs 
are generated by the run length coding module. Note that var- 
ious number of Context Decision (CXD) pairs may output in 
one cycle. The extreme case occurs in the first sample coeffi- 
cient of a column when the run-length coding fails. Four CXD 
pairs are generated in this case: one run-length CXD pair, two 
uniform CXD pairs, and one sign coding CXD pair. The coding 
pass information is also required since the three coding passes 
are processed in parallel. 

B. FIFO 

The FIFO module is used to smoothen the input data flow of 
the AE module. This is because the CF module generates vari- 
ous number of CXD pairs, from 0 to 4, per cycle. However, the 
AE module can only process one CXD pari per cycle. Thus, the 
use of the FIFO module can alleviate the problem arisen from 
the throughput mismatch between the CF and AE modules. As 
shown in Fig. 5, there are four registers in the FIFO, in which 
each register has seven bits comprising two bits of coding pass 
and five bits of CXD pair. 

Fig. 5. Block diagram of the FIFO module. There will be 0 - 4 inputs and one 
output per cycle. 

c 4  c c  

Fig. 6. Block diagram of the.AE module. It has three suits of the coding status 
registers and one suit of processing elements. 

C. Arithmetic Encoder 

In the proposed architecture, the three coding passes in a bit- 
plane is proposed in parallel. Thus, there are three embedded 
bit streams to be processed by the AE in parallel. Therefore, 
the Pass Switching AE (PSAE) [ 111 is adopted. By using the 
PSAE architecture, only one suit of processing unit is required 
to encode three coding passes in parallel as shown in Fig. 6. 
Two stages of pipeline is used in the proposed architecture. In 
this architecture, the index of the probability table can be up- 
dated in the first stage of pipeline. Thus, no probability look 
ahead is required and the hardware cost is reduced. Moreover, 
the re-normalization and the byteout operation can be finished 
in one cycle, which can ensure that one CXD pair can be con- 
sumed by the AE module. 

IV. EXPERIMENTAL RESULTS 

A. Implementation 

The proposed EBC architecture is described by the Verilog 
HDL (Hardware Description Language) and synthesized by the 
Synopsys design analyzer. The detailed hardware requirements 
of the proposed EBC architecture is shown in Table 11. The 
logic gate count is reported in two-input NAND gate equiva- 
lent. Note that the area of the AE module includes the MQ- 
coder and three suits of the coding status registers. 

The proposed EBC architecture is implemented by UMC 0.18 
p m  CMOS technology. The layout view of the prototype chip 
is shown in Fig. 7. The core area of the chip is 0.481~0.478 
mm2. The target operating frequency is 100 MHz.  The power 
consumption is 26.4 mW with 0.1 8 V supply voltage. 

B. Comparison 

In this section, we compare the proposed EBC architecture 
with others. The hardware requirement of various EBC archi- 
tectures are summarized in Table 111. Except Fang's architec- 
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TABLE 11 
HARDWARE REQUIREMENTS OF THE PROPOSED ARCHITECTURE 

Module Gate Count Memory 
(NAND2) (bits) 

CF 1937 320 
FIFO 400 0 
AE 6596 0 
OB 865 0 

Control 658 0 
Total 10456 320 

TABLE 111 
HARDWARE REQUIREMENTS OF VARIOUS EMBEDDED BLOCK CODING 

ARCHITECTURES 

Gate Count Memory 
(bits) Architecture (NAND2) 

,~ ~ \ ,  

Lian’s [9] 19000 12288 
Hsiao’s [lo] 21589 8192 

Chiang’s [ 1 1 ] 23927 8192 
Fang’s [I21 91758 768 
This Work 10456 320 

Fig. 7. Layout view of the prototype chip. The core area is 0.481 x 0.478 mn? 
and the target operating frequency is 100 M H z .  

ture [ 121, all the architectures are sequential architectures that 
process a code-block in a bit-plane by bit-plane manner. Fang’s 
architecture is a parallel architecture that process a DWT coeffi- 
cient per cycle. For the sequential architectures, the processing 
rate depends on the number of non-zero bit-planes of a code- 
block. In this comparison, the number of non-zero bit-planes 
is assumed to be six, which is an average value of nature im- 
ages. The unit of the processing rate is defined as Samples per 
cycle (Slcycle). By Table 111, the gate count of the proposed 
architecture is half of that of the other sequential architectures 
and is only 4 of that of the parallel architecture. The memory 
requirement of the proposed architecture is only 4% of that of 
the other sequential architectures. 

In order to make a fair comparison, the Performance Index 
(PI) defined in [ 131 is adopted to compare these architectures. 
The PI is defined as processing rate per unit area (-). 
For various technologies, the area is normalized by doubling 
the area per technology generation. Table IV summaries the 
comparisons of various EBC architectures by this metric. By 
Table IV, the proposed architecture is six times better than other 
sequential architectures and is comparable to the parallel archi- 
tecture. This mainly comes from the low cost context forma- 
tion. 

v. CONCLUSION 

In this paper, an area efficient architecture for the embedded 
block coding in JPEG 2000 is proposed. A new scheme is pro- 
posed to accomplish context formation by computing all the 
state variables on-the-fly. Therefore, a total number of 8 K h  
state variable memory is eliminated. The area of the proposed 

TABLE IV 
COMPARISONS OF VARIOUS EMBEDDED BLOCK CODING ARCHITECTURES 

PI Architecture Tech. Rate Area 
Olm) (A) (mm2) (-1 

I .I._ ,,.,.< 

Lian’s [9] 0.35 0.128 6.49 0.0197 
Hsiao’s [IO] 0.35 0.128 5.52 0.0232 

Chiang’s [ l l ]  0.35 0.167 5.20 0.0321 
Fang’s [12] 0.25 1.000 5.50’ 0.1818 
ThisWork 0.18 0.167 0.92’ 0.1815 

t Normalized by doubling per technology generation. 

architecture is only of other sequential architectures while the 
throughput is the same as others. According to the experimen- 
tal results, the proposed architecture is the most cost-effective 
among existing architectures. 

REFERENCES 
[I]  JPEG 2000 Part I: Final Draft International Standard (ISOfIEC 

FDIS15444-I). 
[2] JPEG 2000 VeriJcation Model 7.0 (Technical Description). ISOjlEC 

JTCI/SC29/WGl N1684, Apr. 2000. 
[3] JPEG 2000 Requirements and Profiles. ISO/IEC JTCI/SC29/WG I 

N1271, Mar. 1999. 
[4] D. Taubman and M. Marchellin, JPEG2000: Image Compression Fun- 

damentals, Standards and Practice. Kluwer Academic Publishers, 
2002. 

[SI A. Skodras, C. Christopoulos, and T. Ebrahimi, “The JPEG 2000 still 
image compression standard,” IEEE Signal Processing Mag., vol. 18, 
no. 5, pp. 36-58, Sept. 2001. 

[6] JPEG: Still Image Data Compression Standard. W. Pennebaker and J. 
Mitchell, New York Van Nostrand Reinhold, 1992. 

[7] D. Taubman, “High performance scalable image compression with 
EBCOT,” IEEE Trans. Image Processing, vol. 9, no. 7, pp. 1 158-1 170, 
July 2000. 

[8] EBCOT: Embedded Block Coding with Optimized Truncation. ISO/IEC 
JTCI/SC29/WGl N 1020R, Oct. 1999. 

[91 C.-J. Lian, K:F. Chen, H.-H. Chen. and L.-G. Chen, “Analysis and ar- 
chitecture design of block-coding engine for EBCOT in JPEG 2000,” 
IEEE Trans. Circuits Syst. video Terhnol., vol. 13. no. 3, pp. 219-230, 
Mar. 2003. 

IO] Y.-T. Hsiao, H.-D. Lin, and C.-W. Jen, “High-speed memory saving ar- 
chitecture for the embedded block coding in JPEG 2000,” in Proc. IEEE 
Int. Svmp. Circuits and Systems, Scottsdale, Arizona, May 2002, pp. 
133-1 36. 

I I] J.-S. Chiang, Y.3. Lin, and C Y .  Hsieh, “Efficient pass-parallel for 
EBCOT in JPEG 2000,” in Proc. IEEE Int. Symp. Circuits and Systems, 
Scottsdale, Arizona, May 2002, pp. 773-776. 

121 H.-C. Fang,T.-C. Wang, C.-J.Lian,T.-H. Chang, and L.-G.Chen, “High 
speed memory efficient ebcot architecture for JPEG2000,” in  Pror. IEEE 
Int. Synip. Circuits and Systems. Bangkok, Thailand. May 2003, pp. 
736739.  

131 H.-C. Fang, C.-T. Huang, Y.-W. Chang, T.-C. Wang, P.-C. Tseng, C.-J. 
Lian, and L.-G. Chen. “81 MS/s JPEG 2000 single-chip encoder with 
rate-distortion optimization.” in ISSCC Dig. Tech. Papers, San Fran- 
cisco, CA, Feb. 2004. pp. 328-329. 

ISO/IEC JTCI/SC29/WGl N1855, Aug. 2000. 

I1 -460 


